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LETTER TO THE EDITOR 

The critical behaviour of clusters with no free ends 
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$ Electrical Engineering and Beckman Institute, University of Illinois at Urbana- 
Champaign, Urbana, IL 61801, USA 

Received 10 August 1989 

Abstract. The number of clusters with no free ends C ( n )  is enumerated up to 21 bonds 
on a square lattice for bond dilution. The exponent v governing the growth of the radius 
of gyration of the cluster is also calculated. It is found that C ( n ) -  n-0563 .15”  and 
v=0.54*0.01. 

The self-avoiding polygon has been studied extensively [l-51. It is found that the 
exponent of its radius of gyration v is the same as that of the end-to-end distance of 
the self-avoiding walk. Because the self-avoiding polygon is just a one-loop diagram, 
it would be interesting to study the exponent of the radius of gyration for diagrams 
with more loops, i.e. the diagrams with no free ends (NFE).  Another motivation for 
enumerating the diagrams with NFE is that these diagrams are very useful in series 
expansions for a number of problems such as lattice animals, localisation and percola- 
tion. Harris [6] has formulated an effective single-site potential which eliminates free 
ends from the diagrammatic series expansion. Hence, for classical problems, an 
enumeration of diagrams having NFE is sufficient for the low-concentration series and 
one can thereby get much longer series. The effect of the loops has been studied [7 ,8]  
for lattice animals. An important conclusion drawn from the work of Lubensky and 
Isaacson [9] is that the loops are irrelevant for the lattice animals. Series analyses 
[7,8] of the lattice animals with a prescribed number of cycles confirmed the conclusion 
that vc is independent of C, where C is the number of the cycle in the animals and 
vc is the corresponding correlation length exponent. 

In this letter, we consider the effect of adding more loops to the one-loop diagram. 
We have enumerated the number of the diagrams with no free ends and calculated 
the exponent of the radius of gyration on a square lattice for bond dilution. We found 
that the exponent of the radius of gyration for the diagram with no free ends vNFE = 0.54 
which is different from that for the one-loop diagram v = 3/4 [ 101 and from that of 
the lattice animal v = 0.64 [ 113. 

We assume that the number of diagrams with no free ends having n bonds C ( n )  
obeys the following scaling form: 

where 6 is an exponent. Because we are considering bond dilution, the square radius 
of gyration should be defined in terms of bond coordinates. The coordinate of bond 
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i is defined as that of the midpoint of the bond. Thus the square radius of gyration 
with respect to the centre of mass is defined as 

1 
R i  = - c I r, - rc12 

n ,  

and the mean-square radius of gyration p ( n )  is given by 

where r, is the centre of mass and yn denotes all of the diagrams having n bonds. 
Here we set p (  n )  = 0 if C (  n )  = 0. 

We have calculated C ( n )  and p ( n )  on a square lattice up to 21 bonds using a 
partial enumeration method [ 121 based on the backtracking algorithm [ 131. This 
calculation was done on an Apollo AD 4500 work station (a  little slower than a VAX 
8650) and took about 99 hours of CPU time. The coefficients C ( n )  and n C ( n ) p ( n )  
are listed in table 1 .  We have analysed the series using the Pad6 approximant and the 
differential PadC approximant [14]. We first analysed the series x1 defined as 

where K is the fugacity. Since the pole is exactly one, we can get vNF13 with greater 
accuracy. We then analysed x2 and x3 defined as 

Table 1. The coefficients of the series. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

L 
2 
9 

20 
68 

174 
577 

1586 
5 088 

14 604 
45 899 

135 456 
420 640 

1 263 060 
3 902 262 

11 842 828 

0.0 
0.0 
0.0 
1 .O 
0.0 
8.0 
8.0 

73.0 
192.9 

1018.2 
3 358.6 

14915.0 
51 669.6 

207 616.5 
726 262.7 

2 745 435.0 
9 527 305.0 

33 970 370.0 
105 794 800.0 
266 624 100.0 
452 469 800.0 
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and used the value vNFE that we got from x ,  to determine A and 8. We obtained 
vN,,=O.54*0.O1, 8=0.56*0.01, and A =3.15*0.11. Note that for the one-looppoly- 
gon Y = 3/4 [ 101 and for lattice animals v = 0.64 [ll]. Because the diagrams having 
NFE are more compact, YNFE should be smaller than that of the one-loop diagrams 
and that of the lattice animals. 

In summary, we have enumerated the number of the diagrams having NFE and its 
exponent of the radius of gyration. We found that vNFE = 0.54 which is different from 
that of the one-loop diagrams and that of the lattice animals. 

We would like to thank Dr R Kozack for careful reading of this manuscript. We thank 
University of Illinois for computational facilities. Jian Wang thanks the NIH for 
support under grant no 4-60358. 
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